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The present paper addresses some topical issues in modelling compressible turbulent 
shear flows. The work is based on direct numerical simulation (DNS) of two su- 
personic fully developed channel flows between very cold isothermal walls. Detailed 
decomposition and analysis of terms appearing in the mean momentum and energy 
equations are presented. The simulation results are used to provide insights into 
differences between conventional Reynolds and Favre averaging of the mean-flow 
and turbulent quantities. Study of the turbulence energy budget for the two cases 
shows that compressibility effects due to turbulent density and pressure fluctuations 
are insignificant. In particular, the dilatational dissipation and the mean product 
of the pressure and dilatation fluctuations are very small, contrary to the results of 
simulations for sheared homogeneous compressible turbulence and to recent propos- 
als for models for general compressible turbulent flows. This provides a possible 
explanation of why the Van Driest density-weighted transformation (which ignores 
any true turbulent compressibility effects) is so successful in correlating compressible 
boundary-layer data. Finally, it is found that the DNS data do not support the strong 
Reynolds analogy. A more general representation of the analogy is analysed and 
shown to match the DNS data very well. 

CA 90024-1597, USA 

1. Introduction 
There has been considerable evidence that the Van Driest density-weighted transfor- 

mation (see Van Driest 1951) can collapse velocity profiles of compressible turbulent 
boundary layers onto the incompressible law of the wall (see for example Fernholz 
& Finley 1980; Huang, Bradshaw & Coakley 1993; Huang & Coleman 1994). Since 
the Van Driest transformation can be viewed as a straightforward extension of the 
mixing-length model, the implication is that the difference between compressible and 
incompressible turbulent boundary layers is mainly due to mean density variations, 
while compressibility effects resulting from turbulent density and pressure ffuctua- 
tions are negligible. This proposition is in line with the Morkovin hypothesis (see 
Morkovin 1964), which postulates that the essential dynamics of compressible turbu- 
lent boundary layers closely follow the incompressible pattern, as long as the r.m.s. 
fluctuating Mach number is small (as in a boundary layer with free-stream Mach 
number less than 5,  say). 

f Mailing address: mail stop 229-1, NASA Ames Research Center, Moffett Field, CA 94035, USA. 
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YIH 
FIGURE 1. Turbulent Mach number in a fully developed compressible channel flow - 

Case A: (Re, M ,  (Tc)/Tw) = (3000, 1.5, 1.38) and Case B: (Re, M ,  (Tc)/Tw) = (4880, 3, 2.47). 

Recent work by Huang et al. (1993) has shown that the Van Driest transformation 
can also be applied in hypersonic regions (up to Mach 11) as well as in non-adiabatic 
situations. Furthermore, in the recently completed study by Huang & Coleman (1994) 
using data from a compressible channel flow direct numerical simulation (DNS) of 
Coleman at al. (1993) and Coleman, Kim & Moser (1995), the companion paper 
to this, it was found that a simple ‘variable-mean-density’ extension of the mixing 
length model is adequate to represent the compressible law of the wall, although the 
turbulent Mach numberf, Mt = ( k ) ’ j 2 / ( a ) ,  of the DNS data, as depicted in figure 
1, is about the same as in a compressible turbulent mixing layer at a convective 
Mach number of 1. (In the above, ( k )  = (ui’ui’)/2 is the ensemble-averaged turbulent 
kinetic energy per unit mass, and (a) is the mean speed of sound; see $2 for further 
definitions.) These studies have suggested that compressibility effects due to turbulent 
fluctuations may not be as strong at a given Mt in boundary layers as in mixing 
layers (cf. Sarkar 1995). 

In this study we again consider results from the DNS of Coleman et at. (1993, 
1995), which are of fully developed supersonic flow in a channel with cooled walls, 
with constant specific heats, y = c,/c,, = 1.4 and a constant Prandtl number of 0.7. As 
explained in 93, the flow is driven by a constant body force per unit mass rather than a 
constant pressure gradient: because the density varies across the channel, so does the 
equivalent pressure gradient, but this does not affect our qualitative conclusions. The 
DNS solutions include two cases: A, with Reynolds number Re = 3000, Mach number 
M = 1.5 and mean channel centreline-to-wall temperature ratio (Tc ) /T ,  = 1.38; and 
B, with Re = 4880, M = 3 and (Tc ) /T ,  = 2.47. Here Re is based on the bulk density, 
pm = so (p)dy/H, bulk velocity, Urn E viz/prn (where viz = f(pu)dy/H is the mass 
flow rate per unit area), channel half-width, H ,  and wall viscosity, p,,,; and M on 
the bulk velocity and wall sound speed, a, (the subscript w is used throughout to 
denote the value at the wall). In addition, the data presented by Kim, Moin & Moser 
(1987) and Mansour, Kim & Moin (1988) for an incompressible channel flow with 
Re = 2790 are shown for purpose of comparison. Coleman et at. (1995) attempted to 

t Some other workers have used different definitions, e.g. Mt = (2(k))1/2/(a). The present choice 
is most convenient for discussion of models. 

H 
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Incompressible? Compressible* 

2790 3000 4880 
0 1.5 3 
1 1.38 2.49 

Case A Case B 

(Pc)(uc)H/(PL,)  3250 2760 2871 
H’ = ~ ( P c ) ( ~ w / ( P c ) ) ” * / ( ~ c )  180 151 150 

u,/U?Tl 0.0645 0.0545 0.0387 
maximum Mt 0 0.168 0.253 

?’ Kim et al. (1987) 
$: Coleman et al. (1995) 

TABLE 1. Comparison of the channel flow DNS (Re and M are based on the bulk velocity, the 
bulk density, and the viscosity and the sound speed at the wall). 

minimize differences due to Reynolds number effects by making the local Reynolds 
numbers, ( p ) ( u ) y / ( p )  (where ( p ) ,  (u) and (p) are the local mean density, velocity 
and viscosity, respectively), of the three cases as similar as possible. A comparison 
of conditions used in the three channel flow DNS is presented in table 1 (see also 
table 3 of Coleman et al. 1995). The centreline Reynolds numbers ( p c ) ( u , ) H / ( p c )  are 
3250, 2760 and 2871 for the incompressible DNS and for compressible Cases A and 
B, respectively; the corresponding values of y’ (= ( p ) y  ( ~ , , , / ( p ) ) ~ ’ ~ / ( p ) )  at the centre 
of the channel (y = H )  are 180, 151 and 150. Furthermore, as will be seen below, 
the budgets of the mean momentum, energy and turbulent kinetic energy equations 
for the three cases are very similar - indicating that discrepancies resulting from 
Reynolds number effects are indeed small. These data offer a unique opportunity: (i) 
to compare conventional Reynolds or ensemble averaging (commonly referred to as 
‘time’ averaging; in the current stationary DNS this is done by averaging over time 
and planes parallel to the walls) and mass-weighted averaging (commonly referred 
to as ‘Favre’ averaging, although Reynolds (1895) was the first to propose it); (ii) to 
investigate transfer between the mean, turbulent and internal energies ; (iii) to study 
the influence of terms containing density fluctuations ; (iv) to assess compressibility 
contributions due to turbulent fluctuations in the overall energy budget; and (v) to 
validate the concept of the strong Reynolds analogy and its variants. 

In this paper, all results will be plotted against y / H .  To obtain the corresponding 
wall coordinate, y+ = pwyu , /pw  (where u, = ( rw/pw)1’2 ,  with pw = (pw)), for the 
incompressible case and compressible Cases A and B, one should multiply y / H  by 
180, 222 and 451, respectively. The incompressible DNS shows that at the beginning 
of the fully turbulent region, y+ * 30 say, the value of ( 2 1 2 ) / ( 2 ~ )  (where (212) and ( T T )  

denote mean viscous and total shear stress) is approximately 0.13. The corresponding 
y’ at ( z l 2 ) / ( ~ = )  = 0.13 is approximately 31 and 30 for Cases A and B, respectively. 
The values of y / H  at this position for the incompressible DNS and for Cases A and 
B are approximately 0.17, 0.2 and 0.19, respectively. Comparisons of y+ us. y* and 
y / H  us. y’ for the three cases are presented in figure 2. The lines for incompressible 
flow are exactly straight; those for compressible flow are nearly straight because the 
temperature is nearly constant except near the wall (see figure 4). Although there is no 
unique definition of y+ that will collapse all compressible channel flow data, we find 
that y* (which is based on z, and local properties) is perhaps the best among three 
possible definitions for the wall coordinate: pwyu , /pw ,  p y u T / p  and p ( ~ , / p ) ~ / ~ y / p .  
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FIGURE 2. Variations of y’ versus (a )  y+ and (b) y / H .  

2. Reynolds and Favre averaging 
First, let us define the following: ( ) the ensemble average and { } the Favre average 

given by {f} = ( p f ) / ( p ) ;  the single prime, ’, and the double prime, ’ I ,  represent the 
turbulent fluctuations with respect to Reynolds and Favre averages, respectively. The 
dependent variables are decomposed according to : 

It should be noted that ( f ’ )  = 0 and (pf”)  = 0 but ( f ” )  # 0. 
The relationship between the Reynolds- and Favre-averaged quantities for velocities 
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YlH 
FIGURE 3. Streamwise velocity profiles - mean and fluctuating components: (a) Case A, (b)  Case B. 

and temperature can be written as 

where f = u, or T.  Figures 3 and 4 compare the Reynolds-averaged mean streamwise 
velocity, (u),  and its fluctuating component, (u”), and the Reynolds-averaged mean 
temperature, ( T ) ,  and its fluctuating component, (T”) ,  respectively. As can be 
seen from the figures, ( f )  >> ( f ” )  and the difference between Reynolds- and Favre- 
averaged quantities is mainly observed in the near-wall region (y”  < 30; i.e. y / H  < 0.2 
approximately) ~ the maximum (d’) is about 3% of (u )  for Case B, while the maximum 
( T ” ) / (  T )  is about 1.2%. Although (f) NN ($1, the slight variation of (f”) causes some 
small differences between a(f)/dy and d(f}/dy near the wall. We shall come back to 
this point later. 

Relationships between the Reynolds- and Favre-averaged values for stresses and 
heat fluxes, respectively, can be written as 

{%”UJ”) = (UL’UJ’) - (u,II) (u,”) + ( p / U , / U J ’ ) / ( p ) ,  

{ u , T ’ j  = (u,’T’) - ( U l n )  (T”)  + ( p ’ u , T ) / ( p ) .  
(2.3) 
(2.4) 

Figures 5 and 6 compare, respectively, the Reynolds- and Favre-averaged turbulent 
shear stresses and heat fluxes. The figures show that the terms associated with the 
products of the two mean Favre-averaged fluctuations, (u”) (of’) and (t”’) { T”) ,  are 
less than 1% and are confined to the sublayer region ( y / H  < 0.1, y’ < 17); thus they 
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FIGURE 4. Temperature profiles - mean and fluctuating components: (n) Case A, (b)  Case B. 

can be neglected in general. The influence of the terms associated with the product 
of the triple Reynolds-averaged fluctuations, (p’u‘u‘) and (p’u’ T‘), extends outside the 
sublayer region, and (p’u’u’) and (p’u’T’) are at least one order of magnitude larger 
than ( p )  (u”) (0”) and ( p )  (d’) ( T ” ) ,  respectively. Thus, one can assume 

(pu”u”) = (pu‘u’) = (p)(u’u’) + (p’u’u’), 

(pd’T”) w (pu’T’) = (p)(u’T’) + (p’u’T’). 
(2.5) 
(2.6) 

Figure 7(a-c) compares distributions of the turbulent shear stress, (u”u”}, the turbu- 
lent kinetic energy, {k} = ( ~ ~ “ ~ } / 2 ,  and the turbulent heat flux, (d’T’’), respectively. It 
can be seen that, when normalized by u, = (zw/pw)1’2 and T, = qw/pwcpur, the profiles 
show a strong sensitivity to Mach number. On the other hand, if the density scale 
( p ) / p w  is taken into account, as suggested by Morkovin (1964) and later by Spina, 
Smits & Robinson (1994), the data fall much closer to the corresponding incompress- 
ible curves (since there are inevitable Reynolds number differences between the three 
cases, as explained in the introduction, the data would not collapse exactly even if there 
were no compressibility effects). Although the need for this ‘density transformation’ 
may be obvious to many (since, outside the sublayer, (z,)/T, = - ( p ) { u ” u ” } / ( p w u ~ )  w 
1 - y / H  and (qt)  /qw 3 - ( p )  ( {u }  { u”u”) + (u”ui”ui”}/2+cg {u” T”})/(pwu,cp T,) = 1 -y / H  
almost independent of Mach number), the good collapse reaffirms the assumption 
that for supersonic flows the major effect of Mach number is due to mean density 
variations. 
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FIGURE 5. Decomposition of the Favre-averaged turbulent shear stress profiles. Symbol 7 denotes 

any contribution to shear stress. (a) Case A, (b)  Case B. 

The decomposition of uf/2, which may be called the ‘instantaneous (total) kinetic 
energy’, is less straightforward. Substituting the Favre mean and fluctuating velocities, 
one obtains 

(2.7) 
The first term on the right-hand side of equation (2.7) is the Favre-averaged mean-flow 
kinetic energy, ( K }  = { ~ , ) ~ / 2 ;  the second term is K” = {ut}u,”, which satisfies (pK”) = 

0 and may be called the ‘Favre-fluctuating mean-flow kinetic energy’, a choice justified 
when one examines the Favre-averaged total energy equation : the term associated 
with the turbulent diffusion of { K )  is ~ ( ( ~ ) { ~ ~ > { ~ [ ” ~ k ” ) ) / ~ x k  = a ( { p ) { U k ” K ” ) ) / f k k ,  

showing that this definition of K” has a physical interpretation. Since the Favre- 
averaged turbulent kinetic energy is ( k )  = { ~ , ” ~ } / 2 ,  the Favre-fluctuating turbulent 
kinetic energy becomes k” = ~ , ” ~ / 2 -  ( ~ ~ ” ~ } / 2  and it also satisfies ( p k ” )  = 0. Similarly, 
one may define the Reynolds-averaged mean-flow kinetic energy as ( K )  = (uJ2/2 ,  the 
Reynolds-fluctuating mean-flow kinetic energy as K’ = (ut)ut’, the Reynolds-averaged 
turbulent kinetic energy as ( k )  = ( ~ , ’ ~ ) / 2 ,  and the Reynolds-fluctuating turbulent 
kinetic energy k’ = ~ , ’ ~ / 2  - ( ~ ~ ’ ~ ) / 2 .  Both (K’)  and (k’) are zero by definition. 

TUIUt  1 = ; {u l } {u,)  + {u,)u,’/ + ;u,”u,”. 

By definition one can also show that 

{ K )  + (k} + K” + k” = ( K )  + ( k )  + K’ + k’, (2.8) 
(2.9) ( K )  + K‘ = { K }  + K” - ; ( u , ” ) ~  + (u,”)u,”, 



0 . 2 - 1  

( k )  + k‘ = { k )  + k” + (ui”)* - (ui”)ui”, (2.10) 

- -10 
I I I I  1 1 1 1  I I I I I I I I I  I I I I  

I I 1  1 1  I I I I I I I I I I I 1  I 1 1  1 1  I 

and therefore 

{ K )  + { k )  + (K”) + ( k ” )  = ( K )  + ( k ) ,  (2.11) 
(2.12) ( K )  = { K )  + (K”)  + ;(uL”)2, 

( k )  = ( k )  + ( k ” )  - ;(#,”)*. (2.13) 

Equation (2.13) can also be derived directly from equation (2.3). Equations (2.11) 
to (2.13) illustrate that the ‘mean/turbulent’ partitions of the Favre and Reynolds 
averages are different even though their sum is the same. Furthermore, by ensemble 
averaging K” and k”, one finds 

( K ” )  = { u i ) ( u L ” ) ,  

( k ” )  = ;(ui”ui”) - +{Ui”Ui”}. 
I 

(2.14) 
(2.15) 

The evaluation of ( K ” )  is straightforward, but that of (k”)  is not, because the first 
term on the right-hand side of (2.15) is the Reynolds-averaged value of ui”ui”, not the 
Favre-averaged value. However, it can be can shown that 

(Uj”Ui”) = (Ui’Ui’) + (Uj”)? (2.16) 
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FIGURE 7 .  The effect of density scaling: (a)  turbulent shear stress, (b)  turbulent kinetic energy 

and (c )  turbulent heat flux. 

Hence, by substituting (2.3) and (2.16) into (2.15), one finds that 

1 (p'uj'uj') 

2 ( P )  . 
(k") = (Ui")2  - - (2.17) 

We evaluated (k") using both (2.15) and (2.17), and found that the difference is 
less than 0.5% in the region where (k") is not nearly zero (0 < y / H  < 0.5). The 



194 P. G. Huang, G. N. Coleman and P. Bradshaw 

small difference is due to incomplete convergence of the ensemble averages in the 
simulations. 

The decomposition of molecular stresses and heat fluxes, zij and qk, also requires 
some care. The Favre-averaging decomposition is only useful in handling the con- 
vective terms, since density appears explicitly in the formulation of convective fluxes; 
it is less advantageous for the molecular diffusive components, since it gives rise to 
additional terms such as a(z&”)/dxk.  It is unlikely that any averaging system can be 
formed that completely eliminates density variations from the equations. To avoid 
dealing with terms like ( q k ” )  in the mean momentum equation, one can first apply the 
Reynolds-averaging decomposition to the molecular stresses (or heat fluxes) and then 
replace the Reynolds-averaged dependent variables by the Favre-averaged ones using 
relationships such as (2.2), (2.12) and (2.13). The additional ensemble-averaged Favre 
fluctuating quantities, for example (ui”), (TI’), ( K ” )  and (k”) ,  are extra unknowns 
appearing in the mean-flow equations. They will be discussed further in the next 
section. 

By substituting the Reynolds-averaged mean and fluctuating velocities and temper- 
ature into the definitions of zij and qk, one finds 

and 

(2.19) 

where CI is the thermal conductivity. For future reference, we define 

(2.21) 

and 

8 T‘ 
(+-. 

I d  T’ ’8 T‘ 
qkf = -CI - + (. z) -a‘- - 

axk axk axk 

The inclusion of correlations between the fluctuating viscosity (or 
ductivity) and fluctuating rate of strain (or fluctuating temperature 
above is necessary in order to satisfy ( z i j ’ )  = 0 and (qk’) = 0. 

(2.22) 

(2.23) 

fluctuating con- 
gradient) in the 
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3. Governing transport equations 
To simplify the governing transport equations, the Favre decomposition is applied 

to the convective terms so that they can be reduced to exactly the same form as 
those obtained when the incompressible governing equations are averaged. For the 
rest of the terms, the Reynolds-averaged decomposition is applied since there is no 
advantage in using the Favre decomposition. The final equations contain a mix of 
Reynolds-averaged and Favre-averaged mean quantities. It should be noted that most 
CFD prediction methods further simplify the equations by replacing the Reynolds- 
averaged quantities by Favre averages, which may be justifiable because convection 
is probably the most significant mechanism in most turbulent flows. In this paper, 
however, we do not need to make such a simplification, since formulae derived in 
$2 concerning the relationships between the Favre- and Reynolds-averaged variables, 
(2.2), (2.12) and (2.13), can be used to write the final form of the equations in terms 
of only one set of variables - Reynolds averaged or Favre averaged. In the present 
discussion, we use equations based on the Favre decomposition. 

Combining the expressions for the Favre-averaged and fluctuating quantities given 
in the previous section with the Navier-Stokes equations and averaging, the conser- 
vation equations become 

(3.1) 

- ( (p) {UkNK”}  + (p){Uk”k”} + (p)cp{uk”T”}),  (3.3) 
axk 

where {e} = c.{ T }  is the internal energy. The molecular and turbulent diffusion terms 
are the first and second, respectively, on the right-hand side of both (3.2) and (3.3). 
Equation (3.3) represents the conservation of total energy: the sum of the internal, 
mean kinetic and turbulent kinetic energies. The turbulent kinetic energy equation is 

The first term on the right-hand side of (3.4) represents the energy production; 
the second, turbulent diffusion; the third, diffusion resulting from velocity-pressure 
interaction; the fourth, viscous diffusion; the fifth, energy dissipation; and the last 
three are compressibility-related terms. 

The mean kinetic energy and internal energy equations are 

d ( p )  { U d  { K }  = ( p ) { U j l l U k ” }  a {%}  a ( p )  { U k ” K ” }  - a(P)  (uk) 
axk axk axk a X k  
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FIGURE 8. The energy transfer: 
(Za)a(u,)/axk 5.  ( P ) a ( U k ) / a X k ,  6. 
and dashed arrows represent the additional compressibility terms due to turbulent density and 
pressure fluctuations. 

and 

a ( P )  { u k }  

a x k  

a ( p )  cu { u k ” T ” )  a ( q k )  a(&) ’auk’ 
- - - (P)&- - (P &-). d(u1) 

d X k  
= ( 7 z k ) -  + ( 7 4 3  - 

dxk  

Figure 8 symbolizes energy transfer mechanisms among the internal energy, the 
mean and turbulent kinetic energies. Terms 2, 3 and 7 are the additional com- 
pressibility terms resulting from turbulent fluctuation: the first two, ( U k ” ) d ( p ) / & c k  

and ( u L ” ) a ( z l k ) / d X k ,  are responsible for the energy exchange between the mean and 
turbulent kinetic energies (cf. (3.5) and (3.4)) and the last (the pressure4ilatation 
correlation), ( p ’ d U k ’ / d X k ) ,  accounts for an additional exchange between the internal 
and turbulent kinetic energies (cf. (3.6) and (3.4)). 

It should be mentioned that the energy exchange shown in figure 8 is not unique. 
The classical diagram of Favre (1969) (see Lele 1994) shows that the interac- 
tion between { K }  and { T }  occurs via ( p ) d { u k } / d X k  and ( 7 k ) d { u , } / a x k  while here 
( p ) d ( u k ) / a X k  and ( z , k ) d ( u , ) / d x k  are responsible. This difference causes ( u k ” ) d ( p ) / d X k  

and ( u l ” ) a ( T , k ) / a X k  to appear as an exchange between (T} and { k }  in the previous 
approach, while here it appears as an exchange between { K }  and ( k } .  We prefer to 
use the present representation rather than that of Favre because we believe that the 
Favre decomposition should only be applied in the convective terms and in the rest 
of the terms the Reynolds decomposition should be used, as mentioned above. 

The term (zlk’i3u,l/dxk) in (3.4) and (3.6) is the energy dissipation rate per unit 
volume. For convenience, we use c to denote this quantity throughout this paper. 
It should be distinguished from the conventional use of c to represent the energy 
dissipation rate per unit mass. The difference is a factor of mean density, ( p ) .  
Sarkar et al. (1989) and Zeman (1990) have proposed separating e into solenoidal 
and dilatational parts: es = (p)(cq’co,’) (where 0,’ is the vorticity fluctuation) and 
Ed = 4/3 ( p ) ( ( d u k ‘ / d X k ) 2 ) ,  respectively. Strictly speaking, this splitting is valid only 
in homogenous flows (see Huang 1995). Moreover, as will be seen in $4.4, we find 
that for the flow under investigation the ratio of the (homogenous) dilatational 
dissipation to its solenoidal counterpart is so small that one can neglect the former. 
And since dilatational dissipation is small not only compared to the incompressible 

a x k  

(3.6) 
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FIGURE 9. Wall-normal velocity profiles: mean and fluctuating components. ( a )  Case A, ( b )  Case B. 

terms but also in comparison to other compressible terms, it appears unlikely that 
the dilational-solenoidal splitting is useful for the flow under investigation. 

In a fully developed channel flow, the continuity equation leads to { u }  = 0, which 
also implies (u}  = (u") .  As shown in figure 9, the DNS results satisfy {u}  w 0 and 
( u )  w (u"). However, even though (v")  (or ( u ) )  is much smaller than (u"), it is 
not zero. For the channel flow, for example, the conventional Reynolds-averaging 
decomposition leads to governing equations with a non-zero convective term while 
this term is absent from the equations using the Favre decomposition. This is one of 
the main attractions of the Favre decomposition. 

In the DNS, the flow is driven by an external body force in order to avoid non-zero 
streamwise gradients of mean density and pressure, d(p ) /dx  and d(p)/dx. Since it is 
in practice more relevant to explain the physics of a fully developed flow in terms of 
a pressure-driven one, an 'effective-pressure gradient' is introduced to relate the two 
flows. The body force fi and effective-pressure gradient are essentially interchangeable 
in the momentum equation via 

Since in the DNS fi is assumed to be uniform in space, maintaining a prescribed 
value of mass flux rit = f(pu)dy/H = Jt(p){u}dy/H, the mean effective-pressure 
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gradient is a function of y:  

Note however that because the body force is non-zero only in the streamwise mo- 
mentum equation, this y -variation does not imply a non-zero wall-normal effective- 
pressure gradient, or artificially constrain the actual mean thermodynamic pressure, 
whose wall-normal gradient remains neglible (see Coleman et aE. 1995). But there is 
a subtle difference between this body-force-driven fully developed channel flow and 
an actual pressure-driven fully developed channel flow, in which d(p)/dx = -zw/H 
and the total shear stress varies linearly from the wall to the centre of the channel, 
( z f )  = 1 - y / H  (besides the fact that d(p)/dx = 0 in one but not the other). For 
the present body-force-driven flow, the momentum equation, when normalized by 5,  

( E pwu:), is 

where 

(3.10) 

Figure 10 is a comparison of the present and 'real' pressure-driven flows: figure 10(a) 
shows the dimensionless effective-pressure gradient, -(H/z,)(J(p)/dx)eff = (p) /p , ,  
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and figure 10(b) the dimensionless total shear stress, {T;) = 1 - J,l’((p)/p,)dy/H. As 
can be seen, although the variation of the effective-pressure gradient is noticeable, the 
overall effect on the total shear stress is fairly small. Thus, the differences between 
the body-force-driven flow and pressure-driven flows are too small to affect our 
conclusions. 

In the DNS, the molecular viscosity is assumed to be a function of tempera- 
ture according to p/pw = (T/Tw)0.7. Because = (T}07(l + 0.7(T”) /{T}  - 
0.105 (T”2}/{T}2 + O [ ( T ” 3 ) / { T } 3 ] )  and ( T }  >> (T”),  it follows that ( p ) / p W  = 
({ T } /  Tw)0.7 is a good approximation in evaluating the Reynolds-averaged viscosity. 

Note that the velocities in (3.10) are Reynolds, not Favre, averaged. As discussed 
in the previous section, this inconsistency exists in the molecular diffusion terms of all 
the transport equations and one could replace the Reynolds-averaged quantities with 
Favre-averaged variables using relationships derived in the previous section, such as 
(2.2), (2.12) and (2.13). Ristorcelli (1993) observed that (v”) is almost as large as (v} 
in a Mach 4.5 transitional boundary layer DNS (see Dinavahi & Pruett 1993) and 
argued that accurate accounting of the mass flux terms, (u i ” ) ,  is important in near- 
wall modelling. But since the v-momentum equation does not appear explicitly in the 
boundary-layer formulation, this problem may not be serious. For the present DNS, 
(u) >> (u”) (see figure 3), so the assumption that (u) FZ { u }  is probably adequate. 
Indeed, replacing the Reynolds-averaged quantities in all of the viscous diffusion 
terms by the Favre-averaged quantities seems to be appropriate, because, as will be 
shown later, the assumption that cf) >> (f”) is valid in all equations governing the 
boundary-layer flow. On the other hand, this approximation may lead to a small error 
in evaluating the wall shear stress (or heat flux), since gradients are more sensitive 
to changes of the dependent variable. By substituting a(u) /ay  = a{u} /ay  + B(u”)/By 
into (3.10), one can write 

Figure 11 shows profiles of all shear stress components in (3.11); for ease of reference, 
some material is repeated from figure 5. Also, the total shear stress in figure 11 
is obtained by summing the left-hand side of (3.11), and may be compared with 
the results shown in figure 10, which are obtained from the right-hand side of (3.11) 
directly. For y/H < 0.1 (y’ < 17 approximately), the first term on the left-hand side of 
(3.1 l), the Favre-averaged viscous stress, dominates, and the maximum contributions 
from the second and the third terms are about 4% and 2% of the total stress close 
to the wall (Case B). For y / H  > 0.2 (y’ > 30), the turbulent stress dominates and the 
overall behaviour is similar to that found for the incompressible DNS of Mansour et 
al. (1988). 

Next we turn our attention to (3.3), the total energy equation. Since the ‘fully 
developed’ condition imposed in the DNS assumes that the temperature profile does 
not change in the streamwise direction, i.e. dT/& = 0, an overall energy balance 
requires that the heat transfer into the walls equal the total pressure work done (or, 
the total heat generation) across the channel; i.e. 

T w m  

H p m  o Pi7l 

- - -5 SH(pu)dy = -- = -zwUm. (3.12) 
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FIGURE 11. Decomposition of the shear stresses. Symbol 7 denotes any contribution to shear stress. 
(a)  Incompressible DNS (Mansour et d.), (b)  Case A, (c) Case B. 

The total energy equation is thus 
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where 

is the molecular diffusion of mean kinetic energy, 

is the molecular diffusion of turbulent kinetic energy, and 

(3.14) 

(3.15) 

(3.16) 

is the molecular diffusion of the internal energy. For simplicity, some insignificant 
terms have been omitted from (3.14) and (3.15) (see Huang 1995 for a detailed 
discussion). Figure 12 shows the contributions of all the energy fluxes that appear in 
(3.13). Although the values of Mach number and wall temperature for Cases A and 
B are different, their total energy budgets, when normalized by the heat flux at the 
wall, are nearly the same. 
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By substituting (3.14), (3.15) and (3.16) into (3.13), the latter becomes 

(3.17) 

Furthermore, by replacing the Reynolds-averaged variables in the molecular diffusion 
by Favre-averaged quantities, the total energy equation for fully developed channel 
flow can be expressed as 

where the first to third, the fourth to sixth and the seventh to ninth terms on the left- 
hand side of (3.18) represent the molecular diffusion of ( K } ,  { k )  and { T } ,  respectively. 
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The last three terms (the tenth to twelfth) are the corresponding contributions to 
turbulent diffusion. Figures 13, 14 and 15 show all diffusive components of { K } ,  { T }  
and ( k ) ,  respectively. As can be seen from the figures, the diffusive transports of {K} 
and { T }  are the dominant contributions and are at least one order of magnitude larger 
than diffusive transport of { k } .  Moreover, for the viscous diffusion, contributions due 
to turbulent fluctuations and p’-correlations are small compared to the corresponding 
primary Favre viscous diffusion, (p)a{f}/ay, where f = K ,  k or T .  

For a fully developed channel flow the turbulent kinetic energy equation, (3.4), 
reduces to 

a 
dY 

-- ((ZI2’U’) - ; ( p ) { f i ” U i ” U i ” }  - (p’u’)) 

+ &, (3.19) a (P) 
= -(p){u”v”)- - f - (0”)- + (24”)- 

aY dY dY 
where 4ii = (p’Buk’/dxk). Figure 16(a-c) shows budgets of the turbulent kinetic 
energy for the incompressible DNS of Mansour et al. and Cases A and B of the 
compressible DNS, respectively. The incompressible and compressible data sets were 
both normalized by z,U,,,/H. The reason for using this mixture of inner and outer 
variables is that, as equation (3.12) shows for the present flow, z,U,/H is equal to 
--q,/H, while figure 12 shows that the individual heat fluxes for { K } ,  { k }  and { e }  
are almost independent of Mach number and wall temperature when normalized by 



Y lH 
FIGURE 15. Diffusion of turbulent kinetic energy, k.  Symbol Dk denotes any contribution 

to diffusion of ( k ) .  (a) Case A, (b)  Case B. 

qw. Normalization by .t,U,/H therefore seems the best choice for the present cases, 
but is not suggested as the optimum for general spatially developing flows. As can be 
seen from figures 16(b) and 16(c), the normalized budgets for all three DNS cases are 
very similar; also, the collective compressibility contribution (i.e. the sum of the last 
three terms on the right-hand side of (3.19)), is found to be negligible. The individual 
compressibility contributions are plotted separately in figure 17. As can be seen, they 
are limited to y / H  < 0.2 (more generally y* < 30) since the major compressibility 
contribution comes from ( ~ ~ ’ ) a ( ~ ~ ~ ) / a y ,  in which both (u”)  and (rI2) are significant 
only in the viscous region. This term is negative and therefore transfers turbulent 
kinetic energy back to the mean flow. A detailed discussion on relations between 
viscous diffusion and dissipation appears in Huang (1995). 

By substituting (2.13) and (3.15) into (3.19), the equation for turbulent kinetic 
energy in fully developed compressible channel flow becomes 

(3.20) 

The molecular diffusion of turbulent kinetic energy consists of five contributions, 
indicated by the first five terms on the left-hand side of (3.20). The first three terms, 
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FIGURE 16. 
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Turbulent energy budgets. Symbol Tk denotes the transport contribution 

(a) Incompressible DNS (Mansour et d.), ( b )  Case A, (c)  Case B. 
of {k} .  

representing the molecular diffusion due to the Favre-averaged mean component, the 
mean Favre-fluctuating component, and the correlation between viscosity fluctuation 
and fluctuating-turbulent-energy gradient, respectively, are similar to the molecular 
diffusion terms in the mean-flow equations. The fourth and fifth terms (not appearing 
in the molecular diffusion terms in the total kinetic energy equation) are responsible 
for the additional energy exchange between the turbulent kinetic energy and the mean 
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FIGURE 17. Compressibility contributions. (a) Case A, (b)  Case B. 

kinetic energy, since these terms also appear, with opposite sign, at the end of the 
first line of the mean kinetic energy equation: 

(3.21) 

Figure 18 presents a comparison of all the components of the molecular diffusion. 
Results are plotted only for the near-wall region ( y / H  < 0.3) since the molecular dif- 
fusion is important only here. As the figure shows, the major contribution comes from 
the diffusion of Favre-averaged turbulent kinetic energy. An interesting observation 
is that a( ($u’ )a (u ) /dy ) /dy  is the second largest term while d / a y  [ ( p ) 8 ( ( ~ ~ ” ) ~ / 2 ) / a y ]  
is negligible. Very close to the surface ( y / H  < 0.04, y’ < 8), the former diffusive term 
represents a gain of turbulent kinetic energy from the mean kinetic energy while in 
the outer part of the buffer layer (up to y / H  w 0.15, y” w 24) the same amount of 
energy is transferred back to the mean kinetic energy by the same mechanism, owing 
to the integral of this term across the channel being zero. 
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4. Modeling issues 
4.1. On the strong Reynolds analogy 

The strong Reynolds analogy (SRA) suggested by Morkovin (1964) is based on 
the assumption that the fluctuation in total temperature is nearly zero, so that 
cpT' + K' + k' = 0. By assuming that K' >> k', and also that the two-dimensional 
boundary-layer approximation applies so that (u)u' >> ( v ) d  and (w)w', the following 
relation can be obtained: 

To take heat flux at the wall into account, Cebeci & Smith (1974) employed a 
similarity relation between u and T ,  namely ( T T  - T,)/(TT,, - T,) = u/u, (where 
subscripts o and T indicate the free-stream (or centreline) value and the total quantity, 
respectively), to derive an extended form of strong Reynolds analogy (ESRA): 

Although the SRA agrees well with measurements for boundary layers over adia- 
batic walls, Gaviglio (1987) reported that neither the SRA nor ESRA is adequate for 
non-adiabatic flows. Gaviglio (1987) and Rubesin (1990) have independently derived 
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a relationship between u’ and T’ as follows: 

P. G. Huang, G.  N. Coleman and P. Bradshaw 

T’/  ( T )  1 
( y  - l)M2u‘/(u) = c (a(T,) /a(T)  - 1) 

(4.3) 

Gaviglio chose c = 1 and Rubesin c = 1.34. They both reported good agreement with 
measurements. We now show that c is approximately equal to the turbulent Prandtl 
number, P r ,  = ({u”u”)d(T}/~y)/({u”T”}d{u}/ay). The factor c arises from ‘mixing 
length‘ relations, 

(4.4) d (4 u‘ K - 
aY ’ 

which can be combined to give 

(4.6) 

This can be viewed as a definition of c. Making the key assumption that c is 
independent of time, and multiplying (4.6) by pu’ and averaging both sides, yields 

By substituting (2.5) and (2.6) into (4.7) and assuming (u) = {u )  and ( T )  = ( T } ,  one 
can show that 

Finally, (4.6) can thus be written as 

(4.8) 

Applying a ( u ) / a (  T )  FZ (a( TT) /d (  T )  - l)cp/(u) in (4.9), the following can be derived: 

(4.10) 

The coefficient of correlation between u’ and T’ is numerically about 0.8-0.9 (and 
negative in boundary layers on not-too-cold walls) whereas (4.10) implies a correlation 
coefficient of unity. We therefore expect that if (4.10) is used to evaluate other velocity- 
temperature statistics, errors on at least the 20% level will occur even if c is replaced 
by Pr,.  Nevertheless (4.10) is an improvement over (4.2) for first estimates. 

Fi ure 19(a) shows the variation of the dimensionless total temperature fluctuations, 
( TT’’)1/2/Tw, across the channel. As can be seen, the total-temperature fluctuation 
is not negligible in the present very-cold-wall DNS. Profiles of the turbulent Prandtl 
number across the channel are presented in figure 19(b). They are close to the 
incompressible DNS results of Kim & Moin (1989) everywhere except for 0.1 < 
y / H  < 0.3 - the buffer region - where the compressible DNS results display a 
rapid increase of mean temperature (figure 4). The high temperature in this region 
increases the molecular viscosity and hence the thickness of the buffer zone. As 
a result, the Prandtl-number plateau is slightly closer to the centreline than in the 
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incompressible DNS. The Prandtl number peaks at approximately y’ = 40, 50 and 50 
for the incompressible DNS and Cases A and B, respectively. The turbulent Prandtl 
number drops with increasing y after the plateau and the profiles agree very well with 
the incompressible results. The fluctuations found for y / H  > 0.3 in the compressible 
cases are caused by both d(u>/dy and (u”T”} in the definition of Pr, approaching 
zero towards the centreline. The asymptotic-wall Prandtl number is about 1.1 for 
both Mach numbers. This is in accordance with the incompressible DNS. 

Comparisons of the ESRA and (4.10) (or (4.9)) for the two cases are presented in 
figure 20. It is found that the ESRA experiences a change of sign near y / H  = 0.2 (note 
that results in figure 20 are in terms of root mean squares, ( u ” ) ~ / ~  and (T’2)1’’2). The 

DNS data show a drop of ( ( P 2 ) l I 2 / ( T ) ) /  [(p - 1)M2(u’2)1/2/(u)] towards the channel 
centre but the ESRA predicts a rise. In contrast, (4.10) mimics the DNS trends fairly 
well, particularly in the viscous region. Gaviglio’s and Rubesin’s analogies, which in 
effect assume Pr, = 1 and 1.34, respectively, display trends similar to (4.10), although 
they predict somewhat lower values of (( T ’ 2 ) 1 / 2 / ( T ) ) /  [(p - ~ ) M ’ ( u ’ ~ ) ’ / ~ / ( u ) ]  near 

y / H  = 1. 

4.2. On modelling the mean Favre-averaged fluctuations. (f ”) 
To evaluate the mean Favre-averaged fluctuations, such as (ui”) and (T”),  we have 
followed the approach of Rubesin (1990) by assuming that the fluid behaves in a 
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polytropic manner: 

(4.11) 

where the polytropic coefficient, n, becomes a turbulence model parameter. 
substituting (4.9) into (4.11), one finds 

By 

P’ 1 1 (V”T”} pu’ 1 1 {d’T”} pu’ -w--p-w--p- 
( p )  n - 1 ( T )  (u”u”) ( p )  n - 1 (T I  {u%”} (p ) ‘  

(4.12) 

Hence, for any variable (f”), one can obtain: 

1 1 {U”T”} (pu’f“) (f”) = -0 _ - - _ _ _ ~  
( P )  n - 1 { T }  {u”v”} (p )  

1 1 {U”T”} (pu”f”) - 1 1 (U”T”3 ( U ’ ’ f / ’ } .  (4.13) 
n - 1 { T }  {u”u”} ( p )  n - 1 { T }  { u ” ~ / ’ }  

Figure 21 shows comparisons of (u”), (v”)  and (7’”) with (4.13) using n = 0, corre- 
sponding to an isobaric process (implying negligible p’ ;  see figure 14 of Coleman et 
al. 1995). As can been seen from the figure, the agreement is very good. 

We also examined the (uf)-model proposed by Rubesin (1990) 

( U i ” )  = -c(ui”)-(ui (4 N uj / I  >-- W }  1 
f ax j  ( T I ’  

(4.14) 

This model is similar to the one used by Zeman (1993), who, using the boundary-layer 
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approximation d(p)/dy = 0, replaced a ( T } / ( T }  by - a ( p ) / ( p ) .  Unfortunately, no 
unique value of q U , / t )  can be found to satisfy equations for (a”) and (d’) simultaneously. 
To match the DNS data, it was found that c(,”) and qVq should be 1.1 and 0.21, 
respectively, which implies that (4.14) is a less general model than (4.13). 

4.3. On modelling the pressure-dilatation term, q$i = (p’duk’/ax,) 
Based on the observation of figures 16 and 17, we conclude that the contribution 
of the pressure-dilatation term to the turbulent kinetic energy budget is negligible. 
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el Baz and Launder models, and ( b )  Rubesin's model with n = 1. 

Hence, any realistic model should predict that this term is insignificant when applied 
to the supersonic flows under consideration. 

Sarkar, Erlebacher & Hussaini (1992) proposed that the pressure-dilatation term 
could be related to the turbulent Mach number, iM,, the turbulent energy generation, 
Pk = - ( U i f r # k " ) a ( U i ) / a X k ,  and the solenoidal part of the dissipation rate, es, according 
to 

$i j  = - 0 - 8 ( p ) P k M :  + 0.4(p)~sM,Z (4.15) 

where the coefficients are two times larger than those reported by Sarkar et al. (1992) 
because they use M ,  = ( 2 ( k ) ) 1 / 2 / ( a )  to define the turbulent Mach number. 

El Baz & Launder (1993) proposed 

(4.16) 

Unfortunately, as can be seen from figure 22(a), these models not only produce a 
negative 4LL throughout the channel but also unrealistically overestimate its magnitude. 
They were designed mainly to decrease turbulent kinetic energy as Mach number 
increases in order to mimic the behaviour of compressible mixing layers, and evidently 
are unsuitable for wall flows as they stand. 

Rubesin (1990) made use of a ( P ' ~ )  equation to deduce the pressure-dilatation 
term, which appears as a source (or sink) in that equation. First, a ( P ' ~ )  equation 
is derived from the continuity equation for the fluctuating density. To obtain the 
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(p” )  equation, Rubesin assumed a polytropic process, (4.11), to replace p’ with p‘. A 
similar approach has also been adopted by Zeman (1993), who assumed an isentropic 
process (n = 7 ) .  If transport terms are negligible, the (pr2)  equation reduces to a 
equation for the pressure-dilatation term : 

(4.17) 

Rubesin and Zeman derived their closures for by substituting their models of the 
(u,”} equations, (4.14), into (4.17). In this discussion, we shall restrict our attention to 
the original form of the 4LI model, (4.17), since the (u,”) are directly available from 
the DNS data. 

Figure 22(b) compares (4.17) and the DNS data. The & values are normalized by 
p m U i / H .  Since & is significant only close to the wall, results are shown only for 
0 < y / H  < 0.3. For purpose of comparison, we have chosen n = 1 in (4.17). As 
can be seen from the figure, the DNS results indicate that & drops below zero in 
the region very close to the wall ( y / H  < 0.02, y* < 5 )  and Case B displays a larger 
dip than Case A. The values of @ E l  are positive in the region 0.02 < y / H  < 0.12 
and negative for y / H  > 0.12. The two DNS profiles resemble each other, except 
in the negative region very close to the wall. In contrast, the & obtained from the 
polytropic relation (4.17) remains positive throughout the channel and is about one 
order of magnitude larger than the DNS results. Moreover, in contrast to the DNS 
results, the profiles of the two cases predicted by (4.17) are different, the magnitude 
in Case B being larger than in Case A. 

Zeman (1993) used n = y = 1.4 in (4.17). In addition, he proposed multiplying the 
right-hand side of (4.17) by a function that depends on M,: 0.02(1 - exp(-M;/O.2)) 
(We were informed by the late Dr Zeman that this expression is misprinted in Zeman 
1993). Since the magnitude of M ,  in Case B is again larger than that in Case A 
(figure 1), the discrepancy between the two profiles becomes even more pronounced 
if Zeman’s functional factor is included. 

Huang, Bradshaw & Coakley (1994) have shown that the conventional k - E model 
fails when applied to compressible boundary layers. They concluded that the model 
coefficients must be functions of mean density gradients if the unmodified k - E  model 
is to successfully predict the compressible (Van Driest) law of the wall, for example. 
A different viewpoint, however, was raised by Huang (1991) and later by Zeman 
(1993). They demonstrated that the modelled form of shown in (4.17) can remedy 
the problem in the k - e model. This remedy implies that the failure of the k - E 

model was due to compressibility effects - specifically, it was argued that the lack 
of the pressure-dilatation term was the cause of the problem. Since the degree of 
density dependence for model coefficients may vary from model to model (see Huang 
et al. 1994), but + 1 ,  is virtually unaffected by the choice of the model, apparently q$, 
is not the cause of the problem. We believe that by showing that the compressibility 
effects are small, the current study provides a clear-cut answer: the k - E model 
(and any other model using the €-equation) fails because the .+equation contains 
extra (unphysical) terms when transformed to the compressible regime (a detailed 
discussion is given by Huang et al. 1994). Hence, the approach of Huang (1991) or 
Zeman (1993) should be considered only as an unphysical ‘quick fix’ to the k - E 

model. For supersonic boundary layers we instead recommend a more rational and 
physical choice: simply setting n = 0 in (4.17) (again. assuming an isobaric process) 
and neglecting the pressure-dilatation term entirely. 
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4.4. On the dilatational turbulent dissipation 
Another interesting development in the modelling of compressible turbulence is the 
concept of dilatational dissipation. In homogeneous compressible turbulent flows 
with constant viscosity, the turbulent energy dissipation can be cast into the sum of 
only two components - the solenoidal and dilatational parts. Otherwise, the turbulent 
energy dissipation consists of more than these two components. Substituting (2.21) 
into the definition for the turbulent energy dissipation? (Tjk’dUi’/dXk), yields 

(4.18) 

where 

(4.21) 

The quantity €1 can be expressed as the sum of three parts: the solenoidal and 
dilatational contributions to dissipation, and an inhomogeneous term : 

€1 = E, + + €1 (4.22) 

where 

(4.23) 

(4.24) 

(4.25) 

Figure 23 compares the ratio of ed to E,. It is very small throughout the channel - 
being less than 0.03% except in the region very close to the wall (the maximum value is 
about 0.1%, in Case B). This is in surprising contrast to DNS results for homogeneous 
shear flows (see Sarkar et al. 1992; Blaisdell, Mansour & Reynolds 1993), which show 
ratios of 10-20%. Moreover, when the ratio is plotted against turbulent Mach 
number, M,, as shown in figure 23(b), the results for the two compressible channel 
cases are very different, indicating that Q / E ,  and M,  are not correlated. Again, this is 
in contrast to the observation of Blaisdell et al. (1993), who found that Q / E ,  is nearly 
proportional to M,” in homogeneous shear flows. 

Since the splitting of e into solenoidal and dilatational dissipation is exact only 
in homogeneous flows with constant viscosity, the magnitudes of the inhomogeneous 
part, €1, and terms associated with viscosity-fluctuation correlations, €2 and €3, are also 
of interest. Figure 24 shows the ratio of the solenoidal to the total dissipation, eJe; 
also shown are the additional effect of Reynolds-averaged (p’’dui’/dxk) in (es + E ~ ) / E .  

and the ratio including the inhomogeneous terms, ( E ,  + €3 +el)/€.  If we neglect ed, the 
departure of the latter curve away from unity can be viewed as the contribution from 
€ 2 .  As figure 24 illustrates, both €2 and €3 are significant only very close to the wall 
( y / H  < 0.1, y” < 17). One surprising finding is that €3, which involves the product of 
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FIGURE 23. Ratio of dilatational dissipation to solenoidal dissipation (a )  against y / H  and 

(b )  against turbulent Mach number, Aft .  Arrows indicate direction of increasing y / H .  

the correlation between the viscosity fluctuation and the velocity-gradient fluctuation, 
multiplied by the mean strain rate, is a significant fraction of the total dissipation in 
that region: maximum values are about 6% and 16% of the total for Cases A and 
B, respectively. Since p’ cc T’, and T’ cc u’ by (4.10), (p’au’/ay) cc a ( ~ ’ ~ ) / d y .  Thus 
the major contribution to €3 in a thin shear layer, (p’lau’/8y)8(u)/ay,  has a maximum 
deep in the viscous wall region and is much larger there than might be expected. 
Outside the viscous region both factors become small; according to our simplified 
analysis, €3 is zero in a homogeneous shear flow. On the other hand, €2 is small even 
in the viscous wall region, with maximum values about 1.5% and 2.5% of the total 
values for Cases A and B, respectively. The inhomogeneous contribution, €1, is nearly 
independent of Mach number and is about +3% of the total value - this observation 
is in accordance with Bradshaw & Perot’s (1993) investigation of incompressible DNS 
results. In incompressible flow, e1 would be a pure transport term, integrating to zero 
over the flow volume: here it contains a source/sink part because the variable (p) is 
outside the derivative. 

are negligible not only for the isothermal-wall flow 
under investigation, but also for adiabatic flows at a higher Mach number: we have 

Finally, we note that t‘d and 
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been informed by Dr Yan Guo (private communication of work at DLR, Gottingen) 
that his direct numerical simulation of turbulent boundary layers on adiabatic walls at 
free-stream Mach numbers up to 6 also produces very small values for the dilatational 
dissipation and the pressure-dilatation correlation. 

5. Conclusions 
Analysis of DNS results has shown that for fully developed supersonic isothermal- 

wall channel flows: 
(i) Differences between Reynolds (ensemble) averages and Favre averages for the 

streamwise velocity are small and are mainly observed in the region close to the 
surface. 

(ii) For the shear stress and turbulent heat flux, (pu”u”) = (pu’v’) and (pu”T”) = 
(pu’ 7‘’) are adequate assumptions. 

(iii) The DNS data confirm that when turbulent fluxes are scaled by the mean 
density variation, ( p ) / p w ,  the profiles collapse onto the corresponding incompressible 
curves. 

(iv) The DNS results satisfy the mean momentum and energy equations very well. 
Contributions of the extra fluctuating diffusion rates, ( p ) i ? { f ) / l d y  and (p’af’/8y), are 
found to be small and their influences limited to regions close to the surface. 

(v) By isolating and studying in detail modes of energy exchange among internal, 
mean kinetic and turbulent kinetic energies, compressibility effects due to turbulent 
fluctuations are found to be unimportant. 
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(vi) The DNS results do not support previous forms of the strong Reynolds 
analogy for non-adiabatic flows. A more general representation of the analogy has 
been derived and shown to match the DNS results very well. 

(vii) Equations for (u”), (v”) and (T”), which have been derived using a new strong 
Reynolds analogy, agree very well with the DNS data. 

(viii) Existing models for q$j and Ed were all found to grossly overestimate these 
quantities in the present flows. 
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